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Abstract 

Networks are systems of points (nodes) with connections among some pairs of nodes 
measuring the degree of linkage.  Examples include communications networks (the 
internet and phone networks), transportation networks (airlines and roadways), utility 
networks (electrical, natural gas, water-sewer grids), financial networks, social linkages, 
and disease transmission networks. Nodes could be airports and the linkage as the 
number of passengers flown between pairs of nodes. Networks represent an entire 
problem domain of many of the most difficult and unsolved mathematical problems.  
We seek to formulate a foundational structure for networks and specifically develop new 
mathematical metrics for the description of networks in order to usefully describe both 
the static and dynamic properties of networks including identification of changes such as 
system failures, reorganization, and malicious processes.   These network metrics are to 
satisfy a set of criteria and specifically to link the established mathematical foundations 
to practical applications.  An example of what we seek was achieved with the Fourier 
expansion of sound waves into component cosine waves.   Specifically, these new 
metrics are to provide a means of monitoring networks such as internet traffic over time 
by identifying anomalies, malicious processes, and abnormal network behavior. Our 
criteria for the network metrics are that they shall be : (a) well defined mathematically, 
(b) lossless in the description of a network, (c) hierarchical in providing a sequence of 
numerical metrics of decreasing importance, (d) intuitive in order to guide the use of the 
mathematical network expansions and associated metric values, (e) descriptive of the 
inherent topology of the network and strengths of connectivity, (f) sufficiently fast 
computationally in order to be dynamically useful as a tool, and (g) ideally, 
distinguishing types of metrics that are (i) network invariants, (ii)  variables which have 
predictable dynamic behavior, and (iii) variables which are chaotic or random.   
We have been successful in (a) finding network metrics that satisfy these criteria, (b) 
building the computer software to derive such metrics for general networks, and (c) 
testing limited internet traffic with this software. Our work is founded upon our 
discoveries: (1) that every possible network is in one to one correspondence to a specific 
Markov transformation. This provides a solid mathematical foundation and connects 
general network theory both to continuous groups and to Markov processes.  (2) This led 
to our ability to define general entropy (including Shannon & Renyi’ information) 
functions on the rows and columns of the associated Markov transformation and thus to 
distil the topological order/disorder representing the flows into and out of a node into 
entropy values.  (3) Our next advance was that the ambiguous numbering of the nodes 
allows one to sort these entropy values into a histogram representing the entropy spectra 
of the network thus obtaining two curves (incoming & outgoing) representing the entropy 
spectra of the network. (4)  Finally we studied the profiles of different networks and their 
changes over time by monitoring these entropy spectra to determine what is normal for a 
given network and thus to identify anomalous behavior and exactly what nodes are 
involved.  To accomplish this we developed a full software package in both Mathematica 
and JAVA for users to deploy with networks of their own interest and expertise.  The 
final products of our work include (i) technical and white papers, (ii) patent applications, 
and (iii) operational network monitoring metrics software at  www.exasphere.com. 
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1. The Problems, Our Objectives, and Impacts 
 

1.1. Background and Problem Description 
1.1.1. Foundational Laws of Nature are Based Upon Vectors:  All of the 

foundational laws for our physical world are formulated in terms of vectors 
which give the positions and velocities of particles.  All of classical 
mechanics rests upon describing the state of any physical system as a vector 
of such metric values and then predicting the time evolution of this vector. 
[1]  Even with the advent of the theory of special relativity and quantum 
mechanics, the formulations are still in terms of vectors (although in an 
infinite dimensional space). [2] A vector is an ordered set of numbers such 
as (2,  4.6,  -3….).  Even extremely complex systems are well represented by 
the linear superposition of vector forces between component objects that 
give the behavior of any component as responding to the sum of all imposed 
forces. Our inanimate physical world has been very successfully described 
by these vector based laws to an accuracy that is unimaginable.   

1.1.2. Networks are not Vectoral but Matrix Based: Yet with living things  
and in particular social structures and activities, a new thing has emerged, 
the network.   Networks were first studied extensively over the last three 
centuries by mathematicians addressing problems such as the traveling 
salesman problem (who must visit each of a set of cities once and only once 
in a minimal path). [17] Over the last half century social scientists have 
studied the networks formed by people into groups, cliques, and clusters 
including criminal and gang activity as well as organizational and social 
structures.   Then with the advent of highway traffic and telephony over the 
last century and the internet over the last decade, a domain of problems has 
emerged that is of a very different nature and complexity than that 
encountered in traditional science.  This new domain is characterized by 
relationships and connectivity as the fundamental characteristic, not as a 
vector but as a matrix or square array of values as we will now show. 

1.1.3. Description of a Network as a Connection Matrix Cij :  Fortunately 
there is a mathematical description that is clear, unambiguous, exact, and 
easy to understand.  If we number the nodes or points of the network with 
the numbers 1, 2, …. N then we can represent a network as a matrix or array 
of values between nodes i and j as  Cij = strength of relationship from i to j.  
C is called the ‘connection’ or ‘adjancy’ matrix.  Cij might represent the 
number of airline flights per week between city i and city j or the total 
number of passengers flown between the two nodes in a day. Or Cij it might 
represent the amount of money transferred in a given month from bank 
account (or accounting category) i to account j.   And, central to our 
considerations, Cij  might represent the number of emails or bits of 
information sent from computer i to computer j (without regard for the stops 
in between the two).  The critical point is that ANY network can be 
described by such a matrix Cij. This matrix is a square (two dimensional) 
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array of numbers as opposed to a vector which is represented by a one 
dimensional sequence of numbers.   

1.1.4. Essential Properties of the Cij Network Matrix:  The C matrix is not 
just any set of numbers but must satisfy the following:  (1) Zero Diagonal: 
As it is normally not meaningful to talk of the relationship of a thing to 
itself, the diagonal values of C are not defined and are usually taken as zero 
(Cii =0) For example it does not make sense to speak of the airline flights 
from a city to itself.    (2) Non-negative Values: The values of C are not 
negative but are zero or positive numbers (Cij >= 0).  That is because we 
consider the minimal relationship to be none at all.  By the last analogy, one 
cannot transport a negative number of passengers from one city to another.   
(3) Large:  A major characteristic is that networks are very large and thus Cij 
is a huge set of values (N2- N for N nodes where we subtract the N diagonal 
values).   It is easy to envision a computer network of a million or more 
users with a resulting C matrix consisting of a trillion values.  It is this 
astronomical size that overwhelms even any imaginable supercomputer. (4) 
Time Dependent:  Many of the networks are ever changing and thus we must 
consider them as time dependent (Cij = Cij(t)).  Consequently the 
overwhelming number of values within C for one time is compounded again 
astronomically as we consider that we have a succession of values at each 
time where the number of airline passengers changes each day and the 
internet transmissions change every second.  (5) Node Numbering (C) 
Ambiguity: In order to just write the Cij matrix, we must assign numbers to 
the nodes.  Yet if another person were to number the nodes, one would end 
up with a C matrix with the values in very different places. In fact for large 
matrices, it is generally impossible with any known computer to even 
compare to see if two networks are the same.   In general there are an 
astronomical number of different C matrices (N * (N-1) * (N-2)…*1  = N! ) 
that describe the same exact network.  This ambiguity arises from the fact 
that there is generally no normal order or sequence for the nodes that is not 
arbitrary in some sense.  Consequently although Cij describes a network 
exactly and uniquely, there are a vast number (N!) of Cij  that will describe 
that same network so one has an essential ambiguity due to the lack of a 
natural way to number the nodes.  

1.1.5. Operational Issues in Defining C:  (6) Connection Value (Weight) 
Definition:  In establishing the weight values in C, it is important to consider 
what will be the exact definition of the network, specifically, how to define 
the numeric values of Cij  in terms of real world parameters.  Consider 
banking transactions where one could say that a transfer from i to j simply 
gives a Cij = 1 and otherwise a zero.   But with a little thought, one realizes 
that a lot more information is contained in the C matrix if the values indicate 
the total amount of the transfer.  But is $1,000 really 100 times more 
important than $10?  When we refer to the income of a person we often say 
he or she makes a ‘six figure’ income.   An equivalent way of saying this is 
to take the logarithm of the value of transfer which can be shown to be 
indicative of the power of 10 that will give the value in question. Thus one 
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might wish to use the logarithms of the component transactions in order to 
construct the values of Cij. Thus there is no predetermined method of 
assigning weights.  It is the domain expert who must decide what exact 
function of the network weight data will best represent the topological 
connections for the use and analysis intended. (7)  Time Window for 
Summation: In general one finds that a network is usually formed from a set 
of transfers that occur over time.  For example with the number of airline 
flights or passengers, with financial transactions, or with internet data 
transfers, one begins with a database file of records which have the form: (a) 
date-time,  (b) node i,  (c) node j, (d) weight of connection, (and possibly (e) 
a data transfer type indicator).  Then one is to sum the weights over some 
period of time, δ, from t+δ/2 to t+δ/2.   If one chooses too short a time 
period δ then the resulting Cij  matrix is almost all zeros and one gets 
meaningless results.  If one chooses too long a window of time then all 
temporal changes are washed out and averaged leaving no dynamical 
structure.   An exact analogy exists with photography where too short an 
exposure (such as a trillionth of a second) will result in an image with only a 
few dots of light while too long an exposure (such as several weeks) results 
in an overexposed blur consisting of averages of all motions. Thus it is a 
complex problem to decide what time interval will best capture 
representative information at a given point in time.  Again this must be 
decided, as in the weight case above, by an expert in the given domain of 
knowledge. (8) Data Collection:  Finally, all the above points are moot if the 
requisite data cannot be collected. In many cases this is easily achieved as 
with banking transactions or airline flights as such data is routinely collected 
in electronic form.  Privacy issues can be managed by obfuscating the 
identity of the nodes in a renumbering of the bank accounts or airlines and 
storing the ‘true identity’ of each node in a separate secure database.  This is 
a necessary procedure anyway because the nodes must be labeled with 
sequential integers (1, 2, 3, …) in order to construct the C matrix. This 
renumbering hides the true node identity in the associated correspondence 
table.  Indications of attack or system failure for specific nodes can be 
relayed to the holder of the secure database which gives the true identity of 
each node.  However, most cases are much more complex and often it is 
impossible to gather all the data that one needs to define all parts of Cij. One 
example is in capturing the packet transfers among nodes when the transfers 
occur in a foreign country, or in a small office group that has an internal 
router that does not register the transfer above the indicated level.  Other 
serious problems can result from temporary IP addresses and other 
ambiguities in computer traffic that block either the identity of nodes or 
make the determination of the linkage unobtainable.  A similar difficulty 
arises in financial networks when some transfers are made ‘under the table’ 
using unregistered diamonds or transfers through countries and banks that do 
not report the transfer.        

1.1.6. Comparable Scientific Problems:  Problems similar to some of these 
core problems have arisen before in science.  The most obvious is when 
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one has a gas of N identical molecules.  Not only can one not order the 
molecules to distinguish one molecule from another, one has such a vast 
size (1024) that one could never take the measurements of where each 
molecule is located nor could one even write down all of the equations, 
much less solve them!   But a more critical point is that if one could do 
this, the result would be meaningless of a prediction of where each 
molecule is at some future time.  Instead one needs a new and totally 
different set of ‘metrics’ for the gas that give its overall holistic state and 
dynamical development.  Such a problem is solved with the variables of 
thermodynamics and statistical mechanics such as temperature, internal 
energy, volume, pressure, entropy, etc. that summarize the uncountable 
number of individual particle properties and which ignore which particle is 
doing exactly what at a given instant of time. [3] These ‘thermodynamic 
metrics’ provide a holistic view of the gas and its behavior.  Thus here we 
see the core of the problem: We must find (a few) new holistic variables 
(network metrics) that summarize the essential nature of the network.  
These new metrics must distil down the essence of the network 
connectivity (topology) and disregard the vast number of unimportant data 
values.   
Yet networks normally have no concept of distance (an email or financial 
transfer is just as close to a person in China as it is to a person down the 
street).  Without distance one cannot define a ‘volume’ or a ‘pressure’ 
(force per unit area).   Also there is no conserved quantity such as energy 
and thus there is no natural definition of ‘heat’ or ‘temperature’.  In fact 
‘equilibrium’ is not even well defined in general on networks.  This leaves 
us with ‘entropy’ (or its negative information) which can be defined as the 
disorder (or order) in a probability distribution.  However, the network in 
itself does not have a natural content of probability distributions, only 
arbitrary normalizations.    

1.1.7. Importance of the Problem: We see that a vast spectrum of modern 
problems center on understanding the status and dynamical behavior of 
networks.  Our entire national and world economic system of 
communication and information linkages, financial transfers, shipments of 
goods, transportation of people, delivery of utilities, and the contagion of 
disease can only be managed and understood if we are able to understand 
the behavior of networks. All of these social-economic-communication-
transportation problems are network based and not vectoral in nature.  One 
of the most daunting of these problems is the emergence of the internet for 
computer and personal communication including the remote control of 
devices by internet, by software or persons from a distant site often 
without our knowledge or understanding.  Foremost among these 
problems is the emergence of computer bugs, worms, viruses, attacks, and 
an entire spectrum of malicious processes requiring something akin to the 
biological defenses necessary for the maintenance of life forms [6,8,9].  
One example of a network that can wreak havoc on modern society is a 
network of persons who have criminal or terrorist objectives.  But if we 
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cannot maintain secure communication and control for our military and 
corporate complexes then we become subject to attacks and destruction of 
our social order to an extent never before conceivable.   The problem of 
understanding, monitoring, tracking, and securing networks is of the 
greatest possible importance to the security of our nation, world order, and 
the very survival of any form of advanced civilization [16,18].   

1.1.8. Conclusion: Essentially all aspects of our social fabric of civilization are 
composed of networks.  The problem of understanding networks is thus of 
the greatest possible importance for the future stability of all complex 
social systems.  The foundational description in terms of the C matrix is 
well defined and unique (within a few adjustable parameters and certain 
difficulties of data collection). Privacy issues can be managed at least 
technically although we must deal with such issues politically.  So what is 
the problem?  Although the problem resides in the all of the eight (8) 
issues discussed above, it primarily is rooted in the shear volume of 
network data and the fact that any one value is of the same importance as 
every other value.   

1.2. Objectives and Goals 

1.2.1. The Central Goal – Network Metrics:  The central goal of our work is to 
identify functions (which we call network metrics) of the values in the 
connection matrix, Cij , that summarize the data into useful variables as 
described in the requirements above.  Central to such identification is that 
the variables are sensitive to overall structure of C without being sensitive to 
the details of the data, as with thermodynamic variables. Critical to our goal 
is that the network metric variables that are to replace C must have a firm 
mathematical foundation and yet be ‘useful’ in the practical sense. These 
network metrics with their hierarchical order of importance are to replace the 
astronomical number of equally important values in the C matrix.   

1.2.2. Examples of Similar Metrics in Science and Mathematics: This is a 
difficult and somewhat ambiguous requirement but we certainly understand 
it as we have diverse expansions in physics, chemistry, and engineering such 
as the expansion in Fourier series for sound (or other waves), multipole 
expansions for charge and mass distributions, and a large number of 
expansions in orthogonal functions. The central characterization of such 
expansions is that one begins with nearly infinite data and one obtains a few 
numbers that are in ordered importance.  With the Fourier expansion one 
begins with millions of changing amplitudes of the audibly distinguishable 
frequencies and reduces this first to a fundamental tone or note of frequency 
f0.   Then one determines the amount of sound at twice that frequency ‘2f0’, 
and sequentially in multiples or overtones of the basic frequency nf0 .   Other 
notes and deviations arise as much higher terms with very small coefficients.   
The same is true with the multipole expansion for a charge distribution 
where the first term is the total charge; the second is the dipole moment, then 
the quadrapole moment, etc.   One of the first solutions that occur is one 
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which has been studied for decades: that of determining the eigenvalues of 
the connection matrix.   It is known that the eigenvalue spectrum is not 
unique for each unique topology but the main difficulty is that such a 
computation is extremely laborious for large matrices thereby reducing the 
usefulness of this method.  Furthermore the C matrix is still ambiguous as 
the diagonal values are undetermined thus the eigenvalues and eigenvectors 
are totally ambiguous and arbitrary making the whole procedure 
questionable. 

 
1.3. Expected Impact 

  
1.3.1. The implications and impact of a set of characteristic metrics that satisfy 

all of the above criteria would be truly phenomenal and far reaching.  In 
particular these metrics would be of even greater importance if they were 
divided into (a) those that are essentially invariant, (b) those that have 
discernable dynamical behavior, and (c) those that are chaotic or random. 
This would allow one to probably ignore those that are random or chaotic 
and to concentrate on the deviation of the invariant metrics or the alteration 
over time of those that had simple time evolution properties.  

1.3.2. There would be mathematical implications as well as if we could develop 
a set of metrics with a firm foundation in the description of the underlying 
topology – and that would be our aim.  This is because the essence of the 
network is the essence of the topological connectivity and to have functions 
that measure the order and disorder of the organization of connections would 
be the most desirable end results.    

1.3.3. In the last analysis, even if all of the tasks above are satisfied and fulfilled, 
it will take a vast effort to examine different types of networks to ‘profile’ 
the new metrics in terms of ‘normal’ and abnormal behavior and even to the 
extent of measuring ‘how abnormal a given topology is from the norm, in 
terms of deviation of the metrics from their normal profile.  
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2. Technical Approach: Procedures & Methodology  

2.1. Detailed Description of the Technical Approach 

2.1.1. Initial Technical Approach: The analogy with thermodynamics reduced 
the problem to the utilization of entropy as probably the most useful  holistic 
function of the C matrix components.  The discussion above left other 
thermodynamic variables without a foundation in this domain (lacking a 
distance metric and lacking a conserved quantity like energy as well as a 
lack of a natural ‘equilibrium’ state for networks in general). Our further 
discussions and investigations strengthened our premise that entropy is 
exactly the correct variable in that it measures the order or disorder in a 
probability distribution.  It is precisely such an order/disorder metric that we 
would like to have that reflects the structure of the underlying topology of 
the network.   But the problem was that C had an undefined diagonal and 
furthermore C did not contain probability distributions. We worked for over 
a year testing mutual entropy functions and studying the results of arbitrarily 
normalizing the C matrix columns or rows to probabilities (which was 
achievable as the values are all non-negative).  Thus our early work with one 
of the component teams (with  Dr. Gudkov) studied this approach [12,13] 
along with cluster and clique analysis to identify certain topologies.  With 
this team we also utilized complexity theory and made two important 
discoveries: (a) We experimentally found evidence that the internet, in the 
sense of complexity theory, had a dimensionality of about 10 to 12 
dimensions or independent parameters (out of about one hundred variables 
in the IP routing structure that could be possible). This implied that other 
degrees of freedom would be random or chaotic and thus unpredictable.  (b) 
The second discovery was that mathematically, Hausdorf dimensionality 
was directly related to the order of the Renyi’ entropy.   The combination of 
these results indicates that there are about 10 or so degrees of freedom and 
thus that Shannon and Renyi’ entropy up to about order 12 should give 
useful information about the internet if we could figure out how to form such 
functions from the C matrix.  Next we realized the importance of the results 
by Kolmogorov that all information about the network structure could be 
represented in the information (or entropy) functions, in the forms of 
Shannon and Renyi’, of the C matrix if the C matrix could be converted to 
probability distributions.  Thus although we had strong indications that 
entropy functions of the C matrix would be the optimal network metric 
functions, we did not know the precise form as we did not have probability 
distributions from the C matrix.  Related work and investigations by another 
component of our team (Dr. Buell, Dr. Huang, and Dr. Fracas) centered 
more on practical applications of the identification of attacks and anomalies 
using just the number of transmissions into or out of a given server (that is 
just the total sum of elements in the C rows and C columns). These 
processes ignored all higher order connectivity and order/disorder structure.  
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We emphasize that to the very lowest order of approximation, one can just 
look at those total connection values which give the total traffic into or out 
of each node.  Many research programs simply work with those values over 
time as this alone is a vast quantity of data.  The main thrust in such research 
is to identify the anomalous patterns in that data alone over time.  

2.1.2. Technical Breakthroughs & Primary Discoveries:  After extensive 
meetings with consultants and experts and after reviewing the literature, our 
work centered on how to extract the essential topological and structural 
features of the network using the one well defined representation of any 
network, that is the C matrix. We first determined that no such ‘summary 
metrics’ were known.  A lot of work had been done by taking the 
eigenvalues of a C matrix with either zeros or ones on the diagonal. But this 
method was so time consuming computationally that it was useless for large 
scale networks.  It was also known that these ‘eigenvalue metrics’ were not 
sufficient to distinguish some networks which were topologically different.   
Recalling that the C matrix is a square matrix of non-negative values and 
with no definition for the diagonal, we sought ways that we could utilize 
entropy functions to abstract the network structure (topology & connectivity) 
with probability distributions built from the C matrix in order to find a few 
functions (network metrics) of the C matrix that captured the ‘essential 
structure’ of the network and be insensitive to the massive data of what 
every individual node was doing.  We reasoned furthermore that the C 
matrix could be thought of as a measurement of flows that the network 
represented at that instant such as people in transit on planes or electricity in 
transit between stations.   

2.1.3. New Insight: However, without some kind of creative leap forward, there 
did not appear to be any obvious solution for the desired network metric 
functions.  The breakthrough came as a result of prior research on the subject 
of continuous groups of transformation and the Markov transformations.  It 
was realized that this C matrix was, (apart from the its diagonal), identical to 
the generator of an infinitesimal Markov transformation [7,4].  Since this 
Markov generator matrix had non-negative off-diagonal terms and diagonal 
terms that were the sum of the other elements in each column, one only had 
to alter the C matrix to have the same diagonals.  Then each altered C matrix 
had fixed diagonals and became the generator of a continuous Markov 
transformation.  Consequently we obtained our primary result: that every 
network (that is every C matrix of non-negative values with an undetermined 
diagonal) is in one to one correspondence with an infinitesimal Markov 
transformation and conversely [5].  Such an altered C matrix is now exactly 
determined and the associated Markov matrix is of the form M(a) = eaC = 1 + 
aC + a2C2/2! +… .  The importance of this is two-fold: (a) on the one hand 
we now have connected three distinct domains of mathematics – network 
theory, continuous groups of transformations, and Markov theory.  (b) But 
from the practical point of view, the Markov transformations, M, have the 
remarkable feature that each column constitutes a probability distribution 
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that can be used to support an entropy function. (c) Not only that but this M 
transformation has a formal interpretation of the flow of a conserved 
probability among the nodes at the rates given by the off-diagonal values of 
the C matrix.   Thus (d) it follows that the columns of Mc are probability 
distributions that reflect exactly the topological flows into a node indicated 
by that column.   

2.1.4. Row Transformations Equally Important: Also, another type of Markov 
generator emerges if the diagonals of C are determined to be the negative of 
the sums of the row values (rather than column values as before), then the 
probabilities now given by the rows of the associated Mr matrix give the 
flows out of (rather then into) the associated node for that row.   For example 
one could formulate [10,11] the second order Renyi’ entropy for column j as  
Ec

j = log2 (N Σi Mc
ij

2). The Shannon entropy for column j would be defined 
as Sc

j = Σi Mc
ij log2 Mc

ij.  Likewise each Shannon and Renyi’ entropy could 
be computed for the Mr matrix. Consequently, we have determined how to 
form the entropy functions in a unique manner and furthermore this method 
gives entropy functions that are exact distillations of the topology of the 
network for flow out from and flows into each node. This method reduces 
the C matrix of N2- N values down to 2N values which is a very substantial 
compression of information.   Still for a network of a thousand nodes we 
are left with two thousand values rather than 1 million but how do we begin 
to follow even this set of  summary metrics?  

2.1.5. Meaning of the Entropy Metrics of the Markov Matrix: To understand 
what these entropy metrics mean, we must first realize that the above 
procedure takes the altered C matrix and generates an associated Markov 
matrix (one where the columns are probabilities and one where the rows are 
probabilities).  The probabilities in the matrix Mc can be shown to be the 
relative flows into each node from that node representing the column in 
question. Thus a given column of Mc represents the relative transfers into 
that column, in proportion to the connections given in the generating 
connection matrix.  Likewise the row values of Mr can be show to represent 
the relative transfers out of the node associated with that row.  Taken 
together, we see that all of the transfers, as generated by the C connection 
weights, into and out of each node, are measured by the probability 
distributions of the columns and rows of M.  Since these transfers are exactly 
representative of the exact topology of the network, it follows that these 
probabilities exactly measure the topology.   

2.1.6. Definition of Entropy on Rows & Columns of M: Now knowing that these 
probability vectors represent the topology into and out of each node, one can 
ask what does the entropy of such a probability measure. The entropy 
function acts to measure the disorder in the probability distribution.  So if a 
vector of probability has all the same values (e.g. (0.2, 0.2, 0.2, 0.2, 0.2)) 
then the distribution is uniform and the disorder is maximum, just like 
having dirt evenly distributed in a room. But if the probability is 
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concentrated in one place (e.g. (0,1,0,0,0) ) then the disorder is a minimum 
just as though all  the dirt were swept into one pile and put in the trash can 
there.  Thus the entropy functions measure the extent to which the 
probability is distributed or concentrated – both for incoming and outgoing 
transfers.  Thus the entropy is an accurate summary of the topological 
structure of M and thus of C.      

2.1.7. Further Data Reduction: Still one is left with 2N different entropy values 
for the incoming and outgoing entropy metric for each node.  For a network 
of a million connections this gives two thousand values that are constantly 
changing and consequently one is still overwhelmed with data in spite of the 
massive reduction in the number of values that have to be tracked.  The 
solution to this lay in the realization that we do not really care which exact 
node does what as long as about the same number of nodes are doing the 
same inputs and outputs.  For example with telephone networks, it does not 
matter if Bob calls 10 people from 8am to 9pm and then gets off the phone 
and Jack calls 10 people in the next hour.  In either case the phone 
‘topology’ is unchanged as it does not matter which node connects to 10 
other nodes.   Based upon this we realized that it is only the pattern of the 
entropies that mattered and we were able to reformulate this as how to how 
to represent the general structure of all of the entropies in the following 
manner.    

2.1.8. Entropy Spectral Distributions:  The next discovery thus centered on the 
problem with how to represent the entropy spectra.   We realized that since it 
did not matter which node had what entropy, then we could sort the 
entropies in order and form a spectral curve using a non-increasing function.  
The shape of this curve then indicates the topological structure of the 
network flowing into the nodes.  By using the same sort order, we can obtain 
another spectral curve representing the row entropies of flows out of the 
nodes.  A look up table (database) is maintained to allow one to go back to 
find which node corresponds to each point in the graph.  Thus one now has 
two entropy spectral curves that encapsulate the topological structure of the 
network.  Then if two nodes exchange roles in having the same outgoing or 
incoming entropy, then the spectral curve will remain the same. The nodal 
orders can chance over time but one is only interested in the shape of the 
curve and to what extent it deviates from the normal curve.  The next 
problem is then to know what is normal and what is abnormal for a given 
type of network?   

2.1.9. Experimentally Determine the Normal Network Spectral Curve:  The 
exact topology for each type of network is not something we can predict at 
this point. Rather, one simply experimentally determines the shape of the Ec 
and Er entropy spectral curves over time by measuring the network C matrix 
sequentially over time and computing the associated entropy curves again 
and again.  One can then determine the average shape of the entropy curve 
along with one standard deviation.  Then at a future instant, one can overlay 



 11

the Ec
 curve at a given instant of time on top of the average Ec curve to see if 

there are any points which differ by more than an accepted variance.  At 
those points which so vary, it means that the underlying network topology 
differs from the normal topology.  Using the lookup table, one can then 
identify the nodes for which there is a variance and then investigate whether 
there is a true attack or system failure. 

2.1.10. Normalization of the C Matrix – Volume of Flows:  We next realized that 
if all transfers in the matrix were twice as great, then the topology would be 
the same and the spectral curves would be the same also.  However, the 
parameter ‘a’ in the expansion of the M matrix in terms of the C matrix 
would have a different value for these two cases thus making the two 
spectral curves more difficult to compare.  One can see that the parameter ‘a’ 
in the expansion, tells us basically how many connection levels we wish to 
incorporate in the transfers since each power of the C matrix in the 
expansion of M will represent the connections to the connections to the 
connections etc. Although we are primarily interested in the topology of the 
relative flows, it is true that if a network matrix C suddenly has all of its 
values double or triple in size, then this represents an important event.   This 
is similar to having the same investment pattern for stocks and bonds yet 
increasing the level of investment in all exactly proportionally. In the stock 
market this is referred to as the ‘volume of trading’.  Thus we need a way to 
normalize the C matrix to a standard value and to record and plot this 
normalization as the “Amplitude of Transactions”.  Using the fact that the 
trace of a matrix (sum of all diagonal elements) is invariant (and here the 
trace is also the negative of the sum of all the off diagonal elements), we 
choose this trace as a measure of the amplitude and thus renormalize every C 
matrix by dividing by the negative of the trace.  This will lead to a C matrix 
which will always have a trace of unity.  This separate value of amplitude 
can be additionally tracked over time in addition to the entropy metrics.    

2.2. Software Written, Tested, and Reviewed: 

2.2.1. Creation of Prototype Operational Code: Extensive effort was next made 
in rendering the mathematical and algorithmic procedures to a more 
powerful computer software environment.  First our team spent 
approximately nine months in writing the code in Fortran and testing 
network data from the first site with whom we were able to contract (Allen 
University).  We were able to perform internet traffic data capture and to 
render the algorithm correctly in order to identify attacks and malicious 
processes on their university network.  We considered this to be a 
preliminary study for two reasons: (a) we were able to write the code rapidly 
in Fortran but did not consider this to be the final language of choice for 
commercial development. (b) The site data would only be available for about 
a 1 year period and the data was more limited than we desired for our final 
testing and operation. Yet this operation was successful and showed the full 
feasibility of the approach using rapid development techniques. During this 
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analysis, our techniques uncovered a number of infected computers that 
were being used by hackers. We also determined an even larger number of 
computers that were being used for illegal audio and video distribution in 
addition to other activities. These processes had not been uncovered by the 
multiple off-the-shelf intrusion software products being currently used.  

2.2.2. Creation of Final Operational Code:  We next programmed the algorithm 
in two languages: Mathematica and in JAVA with JAVA tool sets.  The 
Mathematica version allowed users with advanced scientific backgrounds 
(but more limited programming ability) to do very complex analysis and 
visual plots of the data and for general network research.   The JAVA system 
was designed professionally and is envisioned to be the code and tool set 
that is to be deployed commercially for applications to networks in all forms.   
Both of these systems were developed and tested using real data against each 
other to make sure that the algorithms gave the same answers.   We have 
made them compatible and complementary and we are now confident in the 
quality of both software environments as final products and deliverables 
from this project.     

2.2.3. Testing and Evaluation of Real Internet Network Data with the Entropy 
Metrics Software: Over the last nine months of the project, we set up a 
second server at another university (Coastal Carolina University) with a 
more extensive agreement for data capture and were able to capture 
extensive streams of network data.   Although the data was still streamed 
after capture (and not analyzed in real time), we were able to identify 
abnormalities associated with malicious processes and illegal use of servers 
and computers on the system.   The report on these results is attached along 
with the associated entropy spectral curves and anomalies so indicated.    

2.2.4. Summary of Consultants & Experts Utilized: By working continuously 
with selected consultants and advisors and using reasonable scientific 
approaches we were able (1) to construct the list of essential and desired 
requirements and issues for the network metrics using analogies with 
thermodynamics, acoustics, quantum mechanics and other areas of physics, 
mathematics, and engineering (as listed above).  (2) We also extensively 
studied the nature of the network specification problem and studied what had 
been done previously in the mathematics and computer science literature 
characterizing networks by the C matrix, and the progress that had been 
made in studying the eigenvalues and eigenvectors of C.  (3) We held two 
conferences to bring together experts in intrusion analysis to understand the 
current state of development and technology in the field.   (4) We 
extensively utilized six world experts for consultation on our methodologies 
and existing internet traffic and anomaly monitoring.  (5) We presented our 
ongoing research both nationally and internationally at meetings and 
technical seminars.  In each case this afforded us the opportunity to meet for 
several days with additional experts in the field both for criticism of our 
methods and for other methodologies. (6) We have published our ongoing 
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works in the literature and later in a refereed journal. (7)  We have made our 
methodology known with white papers, technical papers, power point 
presentations, and posters on multiple levels of technicality.  This material is 
all available on our web site.  (8) We have applied for a provisional patent 
one year ago and now, with our final new results, we have applied for a full 
patent (Dec 2006).  All of these methods and consultations have given us the 
background and external review of our methods and the formulation of our 
requirements.  
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3. Technical Mathematical Background  
 

3.1. Markov Lie Groups and Monoids  
3.1.1. We had previously shown [7] that the transformations in the general linear 

group in n dimensions, that are continuously connected to the identity, can 
be decomposed into two Lie groups: (1) an n(n-1) dimensional ‘Markov 
type’ Lie group that is defined by preserving the sum of the components of a 
vector, and (2) the n dimensional Abelian Lie group, A(n), of scaling 
transformations of the coordinates.   To construct the Markov type Lie 
group, consider the k,l matrix element of a matrix  Lij  as a basis for n x n 
matrices, with off-diagonal elements, defined as  Lij

kl  = δi
k δj

l - δj
k δj

l with i 
=/= j.  Thus the ij basis matrix has a ‘1’ in position ij with a ‘-1’ in position jj 
on the diagonal. These n(n-1) matrices form a basis for the Lie algebra of all 
transformations that preserve the sum of the components of vector.  With 
this particular choice of basis, we then showed that by restricting the 
parameter space to non-negative real values, λij >=0, one obtains exactly all 
Markov transformations in n dimensions that were continuously connected 
to the identity as M = exp (s λij Lij) where we sum over repeated indices and 
where s is a real parameter separated from λij to parameterize the continuous 
evolution of the transformation. In other words λij Lij consists of non-
negative coefficients in a linear combination of Lij matrics.      This non-
negativity restriction on the parameter space removed the group inverses and 
resulted in a continuous Markov monoid, MM(n), a group without an 
inverse, in n dimensions. The basis elements for the MM algebra is a 
complete basis for n x n matrices that are defined by their off-diagonal 
terms.  The n dimensional Abelian scaling Lie algebra can be defined by Lii

kl  
= δi

k δi
l thus consisting of a ‘1’ on the i,i diagonal position.  When 

exponentiated,  A(s)  = exp (s λii Lii),  this simply multiplies that coordinate 
by es giving a scaling transformation. The Lie algebra that results from the 
sum of the Abelian and Markov Lie generators is sufficient to generate the 
entire general linear group that is connected to the identity.  

 
3.2. Connecting Markov Monoids to Network Metrics 

3.2.1. We can begin with the simple observation that (1) since the non-negative 
off diagonal elements of an n x n matrix exactly define a network (via C) 
and its topology with that node numbering, and (2) since a Markov monoid 
basis is complete in spanning all off-diagonal n x n  matrices, then it follows 
that such networks are in one to one correspondence with the elements of the 
Markov monoids [7,4,5]. The Lie Markov matrix that results is exactly the C 
matrix where the diagonal elements are set equal to the negative of the sum 
of all other elements in that column. Thus each such altered connection 
matrix is the infinitesimal generator of a continuous Markov transformation 
and conversely.   This observation connects networks and their topology 
with the Lie groups and algebras and Markov transformations in a unique 
way. Since the Markov generators must have the diagonal elements set to the 
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negative of the sum of the other elements in that column, this requirement 
fixes the otherwise arbitrary diagonal of the connection matrix to that value 
also (sometimes referred to as the Lagrangian) 

3.2.2. It now follows that this diagonal setting of C generates a Markov 
transformation by M= eλC .  One recalls that the action of a Markov matrix 
on a vector of probabilities (an n-dimensional set of non-negative real values 
whose sum is unity), will map that vector again into such a vector (non-
negative values with unit sum). The next observation is that by taking λ as 
infinitesimal, then one can write M = I + λC  by ignoring higher order 
infinitesimals.   Here one sees that the value or weight of the connection 
matrix between two nodes, gives the M matrix element as the relative 
infinitesimal transition rate between those two components of the vector. 
Thus it follows that given a probability distribution xi distributed over the n 
nodes of a network, then M gives the Markov transition (flow) rates of each 
probability from one node to another.  Thus it follows that the connection 
matrix gives the infinitesimal transition rates between nodes with the weight 
reflecting that exact topology.  

3.2.3. Specifically, if  the hypothetical initial probability vector is xi = 
(1,0,0,0…0) then the vector at a time dt later will be equal to the first column 
of the M matrix, M = I + dt C.    Thus the first column of M is the 
probability distribution after an infinitesimal time of that part of the 
probability that began on node 1.  Likewise for all other nodes thus giving a 
probability interpretation to each of the columns of M as the transfer to that 
node.  Thus each column of M can be treated as a probability distribution 
associated with the topology connected to that associated node and will 
support an unambiguous definition of an associated entropy function that 
reflects the inherent disorder (or order) after a flow dt.  Thus the columns of 
M support a meaningful definition of Shannon or Renyi entropies which in 
turn reflect the Markov transformation towards disorder of the topological 
flow to the node for that column.  Thus the Renyi entropy on this column 
can be said to summarize the disorder of the topology of the connections to 
that node to that order of the expansion.  It follows that the spectra of all 
nodes reflects in some sense the disorder of the entire network.  We recall 
that the numbering of the nodes is arbitrary and thus we can now renumber 
the nodes without affecting the underlying topology.  We thus sort the N 
entropy values of the nodal entropy  in descending order which gives a 
spectral curve independent of nodal ordering and thus independent of the 
permutations on nodal numbering (except possibly for some degeneracy 
which we address below).  That spectral curve can be summarized by the 
total value for the entropy of all columns (since entropy is additive and the 
column values are totally independent.  

3.2.4. If the connection matrix is symmetric then the graph (network) is said to 
be undirected, but if there is some asymmetry, then the graph is at least 
partially directed where the flow from i to j is less or greater than the 
converse flow.  If the connection matrix is not symmetrized then one can 
capture this asymmetry by resetting the diagonal values of C to be equal to 
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the negative of all other row values in that row.  Then upon expansion of M 
= I + λC,  the rows are automatically normalized probabilities that in turn 
support entropy functions for each row.  These row entropy values form a 
spectrum which could be sorted by the same nodal values (in order) that is 
used to order the column values.  This will result in a different spectral curve 
that is not necessarily in non-decreasing order for the row entropies.  One 
also can compute the total row entropy as we have done for columns.  If two 
columns have the same entropy then one can remove some of the numbering 
degeneracy by using the values of the associated row entropies by using a 
rank ordering as we did with column values.    

3.3. Comparison with Current Technology 
3.3.1. Current technology is primarily devoted to the lowest level of topological 

connectivity, namely the shear quantity of traffic into and out of each server 
on the network.   As such, it does not capture ANY aspect of the topology of 
the network or who is connected to whom.  The customary metrics with the 
current technology are very extensive in monitoring the time series of traffic 
and the statistical variations into and out of each primary node or server on a 
network.   But this is equivalent to only looking at the total sum of off 
diagonal elements in any row or column of the C matrix as opposed to the 
order/disorder patterns in the transmissions.    Thus the current technology is 
only operational at the lowest level of computation – namely counting and 
performing statistical analysis.   Our algorithms are capable of drilling into 
any level of connectivity of the network associated with any of the nodes 
and furthermore to fully analyze,  with the entropy functions,  the associated 
topology of the network. Thus our system distinguishes between the patterns 
of many transmissions to a relatively few, from a single other computer, or 
from a few transmissions to a very large number of computers. The entropy 
function actually captures the intensity pattern of such connections.  This is 
in contrast to the traditional counting which simply counts the outgoing or 
incoming packets.       

3.3.2. Our network metrics have been (a) well defined mathematically as they 
are exactly defined as well defined functions on the rows and columns of the 
M matrix which in turn is exactly defined in terms of the C matrix which is 
exactly determined by the network.   (b) The entropy description is lossless 
for a network if one uses the sequence of entropy spectra by removing the 
node of highest entropy from a network and then computing the entropy 
spectra for the subnetwork etc exhaustively.  (c) The approach is hierarchical 
in providing a sequence of numerical metrics of decreasing importance 
especially if one computes the differences in the normal spectra and the 
spectra at a given instant and computes the sum of the squares of differences 
between the two curves. (d) The proposed entropy metrics are intuitive in 
that they are associated with a diffusion flow among the nodes at the rates 
indicted by the C matrix.  This intuition can be useful in many ways to guide 
the mathematical network expansions and give insights into metric values.  
(e) The entropy functions are exactly descriptive of the inherent topology of 
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the network and strengths of connectivity and encapsulate the measure of the 
order and disorder in transmissions and receptions.    (f) The algorithms for 
entropy are very fast computationally as compared to other standard means 
(such as eigenvalues) because one only has to square the values after 
expansion in 2, 3, or 4 orders.  (g) The general entropy spectral curve will be 
invariant for the most part (we have found) unless there are anomalous 
processes occurring.   Much of the random processes are eliminated in the 
summation to compute the entropy.  

3.3.3. Comparison to Eigenvalue Computation:  Very extensive past work on 
network analysis has been done by computing the eigenvalues of the C 
matrix.  As was pointed out above this procedure not only takes a great deal 
of computational time, it is also ambiguous as one has no definition of the 
diagonal.  However, with our method there is no remaining ambiguity as one 
now can diagonalized the altered C matrix (with diagonals defined as 
described above) and this will be equivalent to diagonalization of the M 
matrix (since M(a) = eaC).  Furthermore, our methodology reveals the 
meaning of the eigenvalues as the rates of exponential decline of the flow of 
a conserved dispersing fluid on the network at the rates given by the network 
transfers.  The eigenvectors are those linear combinations of nodes that have 
a smooth exponential decrease (at the rate of the associated eigenvalue). This 
shows how our work, as a byproduct, further quantifies and explains more 
deeply, the existing methodologies of eigenvalue/eigenvector research.   

3.4.Explicit Computational Procedure for Proposed Network Metrics: 
3.4.1. Begin with the connection matrix Cij.  It contains all network data. 

Compute the Markov Matrix.    
3.4.1.1.By experiment or simulation, begin with an electronic database of 

transactions of the form: data-time, node from, node to, relationship 
weight = t, i, j, w.    

3.4.1.2.Determine the window of time δt for grouping the transactions into a 
Cij(t ± δt). 

3.4.1.3.Determine whether to use the weight w directly or some other function 
such as log w prior to summing into the Cij value. 

3.4.1.4.Compute the column diagonals   Cjj  =  - Σi Cij to be the negative of the 
sum of all other elements in that column.  This fixes all elements of  Cij  
uniquely.   

3.4.1.5.Normalize Cij by dividing all elements by the negative of the trace.  
Store this number as A(t) which we will refer to as the amplitude of the 
matrix.   

3.4.1.6.Determine the order of the expansion, m, and the expansion parameter 
λ, for the expansion to obtain M(t) as  Mc = I + λ C + λ2 C2 / 2! + … 
λmCm / m!  These choices are interdependent because if one wants the 
topology to reflect only the connections to the connections and no 
higher order then m =2.  Thus  λ should be of a size where λ2  is not 
vanishingly small but where λ3 is in fact extremely small. Also the 
λ must be chosen so that there are no negative elements in M.  
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3.4.1.7.Perform the same operation for rows as was done here for columns to 
obtain another M which we will call Mr. 

3.4.1.8.Now one has obtained two Markov matrices Mc and Mr. that contain 
the incoming and outgoing topological connectivity respectively. Each 
M contains all information in C.  

3.4.2. Compute the entropy (or other statistical) spectra of M:   
3.4.2.1.Each column of Mc. and each row of Mr. is a vector whose non-

negative components sum to unity and thus which can be used as a 
probability distribution.  Each is in fact the probabilistic flow of a 
conserved entity, at the rate of Cij connectivity, in the time λ between 
the associated nodes. Thus the columns (and rows) support the 
computation of both Shannon and generalized Renyi’ entropy 
information (entropy) functions.  Choose a function type and order that 
will characterize the associated topology.  

3.4.2.2.We have used second order Renyi’ entropy in the majority of our work 
as it is the lowest order Renyi’ entropy.  Simply take the sums of the 
squares of the elements in a given column, multiply by n (the number 
of elements in a column) and take the log of this base 2 thus obtaining 
Ec

i (the column entropy for each of the nodes) and Er
i. (the row entropy 

for each of the nodes).        
3.4.2.3.Sort the resulting Ec

i in order of value and thus obtain a histogram or 
spectral curve of these entropies.  Likewise, use this same sort order for 
the Er

i.   
3.4.2.4.Track these two curves over a period of time to determine the average 

shape (for that time of day, day of week, weather etc) and also to 
determine the normal variance curves at 1 and 2 standard deviations. 

3.5. Network Dynamic Tracking 
3.5.1. Overlay the current spectral curves for both columns and rows over the 

average and its variances.   
3.5.2. Aberrant nodes can be easily identified by their variance from the norm. 

One even knows the probability of a deviation of that magnitude. In our 
software, one can simply mouse click on the deviant areas of the curve and 
the node identities are given from the lookup table of which nodes those 
were prior to the sort.  

3.5.3. Compute a measure (such as the sum of squares of the differences) 
between the current curve and the average curve and take this value as Ec(t). 
Likewise compute Er(t) thus obtaining two values along with A(t) (the 
amplitude that was previously calculated).  Then track these three functions 
for a network to identify anomalous topological network behavior.    

3.5.4. This process results in a reduction of the network (Cij(t)) to just three 
numbers at each instant of time: Ec(t), Er(t), and A(t) corresponding 
respectively to the deviation of the column and row entropy spectra from its 
normal pattern and also giving the total volume (amplitude) of network 
flows.  The magnitude of these three functions indicate the magnitude of the 
deviation of the network topology from the normal at each instant.      
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4. Results, Deliverables, & Final Products 

4.1. Deliverables Description 
4.1.1. Project deliverables are (a) this final report.  (b) The software in both 

Mathematica and JAVA source code ready for implementation by 
commercial users. (c) The Web site www.exasphere.com which will serve as 
the central point for the primary results and computer code dissemination. 
(d) All of the above on DVD disk delivered to DARPA and to the Air Force 
Office. (e) A patent application to protect the intellectual property of the 
software and assonated algorithm.   
 

4.2. Technology Transition and Technology Transfer Targets.  
4.2.1. A technology transfer company, ExaSphere Inc has been established in 

order to manage distribution of the associated software and intellectual 
products from this research.  The patent and intellectual property will be 
owned by the University of South Carolina.  The marketing will be managed 
by ExaSphere Inc. with royalties paid to the University.       

4.2.2. This work has been presented in Network and Complexity Conferences as 
follows: (a) Toulouse France April 2004, St. Petersburg Russia September 
2005, New England Conference in Boston Mass. June 2006, and in Greece 
September 2006.   Seminars have been given at the following sites;  AFOSR 
Rome NY, University of Arizona, University of South Carolina and the 
Kiawah Conference on Network Intrusion September 2004.    

4.2.3. Future presentations and papers, similar to those given above, will be 
given to complement the ExaSphere.com marketing of the software products 
and patent licensing.  

4.3. Practical and Computational Considerations 
4.3.1. The work here has both purely mathematical and practical aspects 

pertaining to applications to real networks.  If one only has a single C matrix 
and time is not involved then the following discussion on time windows does 
not apply.   It will then be assumed that one has a data flow with records of 
the form: (a) network type, (b) time, (c) node i, (d) node j, (e) weight.   
These might be SNORT captures of internet traffic between IP addresses, 
financial transitions between bank accounts, power transfers among 
electrical grid substations, or passengers flown between two airports. The 
C(t,δ)  matrix is constructed by summing the weights into the appropriate 
cells (renumbered with integers as i, j = 1, 2, …N) during a time period 
δ centered about time t.  It is obvious that one must have a period δ which 
allows a ‘representative’ accumulation of values for the disagrigation size N.  
If C is too sparse, then one must choose longer time windows or one must 
collapse the matrix nodes by some natural methodology such as IP sectors, 
or flights between states and not airports. In some cases one may wish to 
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combine several network types using a linear combination of the 
contributions determined by the ‘type’ parameter. In some considerations, 
one might wish to modify the weight of the contribution such as using the 
log of the financial transfer.   The software we have built contains loaders 
with such adjustable parameters.  The result of this process is a C(t) with no 
diagonal terms.  We then put this in the form of a Lie Monoid generator by 
setting the diagonal terms equal to the negative of the other terms in that 
column (and later row). We then find it useful to normalize the entire matrix 
to have a fixed trace of -1 or –N as this allows better control over the 
subsequent expansion into the Markov matrix.  

4.3.2. The expansion M(t) = eλC(t) although mathematically guaranteed to 
converge, have non-negative terms, and generally be Markovian, must be 
executed with a small number of terms if C is large.  The parameter λ gives a 
weighting of the higher terms in the expansion where one might choose to 
sum up through ‘k’ terms.  The number of such terms is the extent to which 
M ‘feels out’ the connections to the connections etc. as weighted by the 
parameter λ. These two must work hand in hand since it is meaningless to 
have a very large λ while only expanding to the first order in C. Conversely, 
it is meaningless to expand to many powers, k, of C while using a nearly 
infinitesimal value of λ since higher orders of λ  will make such higher 
powers of C vanish.  The next consideration is that although the M matrix 
has only positive terms when the full expansion is executed, in practice one 
can choose k and λ  which, due to the negative diagonals of C, can give 
negative terms for truncated expansions.  Thus the software must have error 
checks to make the appropriate corrections in the expansion.  

4.3.3. Now having the M(t) matrix for that instant, one computes the Ej
c 

=log2(N(ΣiMij
2)) ie the log of the sums of squares of each column to get the 

entropy (information) for that column representing the transfers into that 
node by the Markov matrix. The spectra is computed by sorting these by 
value while keeping a lookup table for which node goes to which original 
position.  A similar computation is done to compute the entropies of the 
rows Ej

r where the same sort order is used except for removing potential 
degeneracies (where the column values are the same and thus not 
distinguished by order). These two spectral curves, or histograms, are 
computed for each successive time window and overlaid graphically to 
compare the row and column entropy profiles over time.  A critical point is 
to realize that it does not matter that the nodes are renumbered with each 
window, but rather we are interested in whether the profile of order and 
disorder of the underlying topology is ‘about the same’.  Naturally some 
profiles for networks change from late Sunday night to rush hours at 9AM 
Monday. Likewise, power grids depend upon the temperature as well as the 
time of day.  Thus for a given time of day, day of week, and if necessary for 
that network, weather pattern in temperature, one must learn the profile of 
what is normal (i.e. profile one standard deviation) for the network under 
consideration and then to overlay the instantaneous network spectra on this 
and graphically display it. One can sum all of the row entropies into a single 
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value Er(t) and likewise for the columns.  Then one might sum the squares of 
deviations from normal to obtain a single value representing the total 
deviation of column entropies from normal (and likewise for the rows).  Our 
software performs these computations and displays both Ec(t) and Er(t) along 
with the overall network ‘amplitude’ A(t), which is the trace of the original 
C matrix.  This gives us three curves that we can monitor over time as well 
as watching the current row and column entropy spectra displayed overlaid 
upon the normal distribution for those circumstances.  One must then be able 
to identify where anomalies are occurring in the network for example by 
clicking on the associated spectral curve anomaly area.  The system then 
finds the node identification in the lookup table thus identifying the 
anomalous nodes and subnets.   

4.4. Interpretation and Discussion: 
4.4.1. We emphasize again that the flows that are modeled by M(t) = eλC have 

nothing at all to do with the dynamical evolution of the network.  These 
metrics are used to monitor the network state and dynamical behavior but 
not to predict it.  Rather the evolution generated by M(λ) is an imaginary 
dynamical flow that would occur if a conserved fluid (probability, money, 
population …) were to move among the nodes at the rates indicated by the C 
matrix of connected weights.   Thus the value of M(λ) is that the associated 
entropies can be used to summarize the order or disorder of the incoming or 
outgoing topological connectivity of the (static) network at one given instant 
of time. The philosophy here is that the entropy values will capture the most 
essential aspects of the structure of the column and row probability 
distributions, and thus the topology, to that level of expansion of the 
parameter λ. By expanding to higher powers of C, with larger values of 
λ, the entropy metrics capture increasing levels of the connections to the 
connections etc.   Also by utilizing other Renyi’ entropies, one obtains other 
spectra and values that measure other ‘moments’ of the probability 
distributions.  
 

4.4.2. One can also consider alternative diagonal values of the C matrix by 
adding the Abelian scaling group transformation generators to the diagonal 
values of C.  These transformations destroy the conservation of the modeled 
flow (such as probability) and thus the resulting transformation is no longer 
Markovian. These altered diagonal transformations are equivalent to adding 
sources and sinks of the modeled fluid at the associated nodes.  It is straight 
forward to prove that the entropy value E(t) =  log2(N<x(t)|x(t)>)  when 
taken to only the third level of expansion, can, with its partial derivatives 
with respect to such sources and sinks at the node ‘j’, for different initial 
conditions for the flow |x(0)> at node ‘i’, formally obtain the entire C matrix 
thus showing that the entire topology of the network is contained in the 
entropy functions and its derivatives.  

4.4.3. When C is diagonalized, with the values leading to the Markov 
transformations, or to the more general values of the diagonals of the last 
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paragraph, one automatically gets a diagonalization of the M matrix.  The 
interpretation of the eigenvectors is now totally obvious as those linear 
combinations of nodal flows that give a single eigenvalue (with exponential 
decrease when the transformation is Markov) of the associated probability, 
for that eigenvector.  This follows from the fact that all Markov eigenvalues 
are negative except the one value for equilibrium which has eigenvalue unity 
for equilibrium.  That means that each of these negative eigenvalues of C 
reflect the decreasing exponential rates of decrease of the associated 
eigenvector as the system approaches equilibrium as λ approaches infinity in 
M= eλC .  This insight allows us to see that all of the Renyi entropy values 
are increasing as the system approaches equilibrium, which is normally the 
state of all nodes having the same value of this hypothetical probability. The 
use here of this ‘artificial flow of probability under M’ provides us with 
more than just a method of encapsulating the topology with generalized 
entropy values, it also gives an intuitive model for the eigenvectors and 
eigenvalues for C and sheds light on the graph isomerism problem (different 
topologies having the same eigenvalue spectra). Of course it does not resolve 
any graph isomerism issue associated with degeneracy of multiple 
topologies for a single eigenvalue spectra without altering the C matrix by 
the Abelian transformations.  

 
4.4.4. Based upon the arguments above, we suggest that for real networks such 

as the internet, that the appropriate connection matrix be formed, from 
source and destination information transfers, where both asymmetry and 
levels of connection are to be maintained in the C(t) matrix values during 
that window of time about that time instant.  Specifically, this means that if a 
connection is made multiple times in that time interval, then that C element 
should reflect the appropriate weight of connectivity as this adds substantial 
value to the entropy functions.  We then suggest that at each instant, the 
column and row entropy spectra be computed along with the total row and 
column entropy and that this be done for lower order Renyi entropies as well 
as lower order values in the expansion of the Markov parameter λ that 
includes higher order connectivity of the topology.  We are currently 
performing tests to see how effective these entropy metrics are in detecting 
abnormal changes in topologies that could be associated with attacks, 
intrusions, malicious processes, and system failures. The patterns (from our 
simulations) of specific topologies such as rings, trees, clusters, and other 
structures have interesting entropy spectra.   We are performing these 
experiments on both mathematical simulations of networks with changing 
topologies in known ways, and also on real network data both in raw forms 
and in forms simulated from raw data.   The objective is to see if these 
metrics can be useful in the practical sense of monitoring sections of the 
internet and other computer networks.  It is important to note that one can 
obtain these same metrics for subnetworks of the original network. The 
subnetwork would be chosen as that portion of the topology that has 
incoming or outgoing entropy changes that are anomalous [20].  Thus this 
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technique allows an automated reduction or hierarchical expansion 
methodology to drill into the network to monitor those subnets that are most 
dynamically aberrant.  
 

4.5. Results of Monitoring Internet Traffic  
4.5.1. The mathematical and computational techniques defined above along with 

the associated Markov entropy network metrics can be used to analyze the 
static and track the dynamic behavior of any type of network structure.  This 
includes electrical grids, natural gas pipelines, communications networks, 
financial transactions, disease networks and social networks.  But the 
network tracking that we have performed to date concentrated totally on 
internet traffic as defined by Snort data capture at servers of information that 
is sent from one IP address to another IP address. Our objective is to identify 
anomalies, and abnormal behavior relative to normal traffic patterns by 
monitoring the total column (incoming traffic) and row (outgoing traffic) 
second order Renyi’ entropy along with the traffic volume which is 
independent of the traffic topology.  This is similar to separating the buying 
pattern of financial investments from the volume of transactions on the 
market as two separate indicators.  

4.5.2. The associated graph shows the total incoming and outgoing entropy as a 
function of time for a server at a university of 30,000 students and faculty.   
The major anomalies were identified at certain times and these were 
expanded to see the full entropy spectra at those times over the network thus 
identifying the specific nodes that had aberrant behavior.   It was determined 
that these particular anomalies in entropy occurred for nodes that at certain 
times were used to upload and download large volumes of audio and video 
files. 
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5. Conclusions  

 
5.1. Resulting Network Metrics.  

5.1.1. We have proposed network metrics which are generalized entropy 
functions of the Markov monoid matrix M generated by an altered 
connection matrix C.  When sorted, the associated entropy spectra for the 
columns and rows of C monitor the state and time evolution of the incoming 
and outgoing entropy at network nodes.    

5.1.2. These well defined functions, along with the network amplitude function, 
satisfy our original criteria for network metrics.  They can be used to 
dynamically monitor networks relative to such normal metrical values thus 
identifying when the network statistically alters its intrinsic patterns of 
connectivity.  

5.2. Further Analysis Needed.   
5.2.1. Although these functions provide an extremely promising set of metrics 

for the characterization of networks in general, we have only begun to 
explore the association of specific spectral form and behavior with specific 
topologies and network behaviors.   

5.2.2. The spectral form of the incoming and outgoing entropy functions is 
anticipated to be very different in different applications and the study of such 
spectral properties will be extensions of the scale-free network structures 
that have been recently investigated 14, 15, 19].  This is our first major new 
need for further research: It will involve some purely mathematical analysis 
and some testing on diverse networks to determine their normal entropy 
spectral forms. This experimental research need not be done in real time but 
can be accomplished off line.  

5.3. Difficulties Encountered with Real Time Deployment.   
5.3.1. Additionally, we have found great difficulty in running the analysis on 

networks long after the fact using transmitted data that is stored for later 
analysis.  The major difficulty in this arises because the system is not 
identifying the anomaly in real time so that it cannot be easily correlated 
with other network system tracking software and observed network 
parameters.  

5.3.2. We have not yet had time (after the completion of the code and its testing) 
to successfully negotiate the placement of our software into meaningful 
dynamical environments in real time due to political and privacy concerns. 
This is our second major need for future research and it must be done on line 
and in real time in order to optimally correlate anomalies with other 
indicators and information.        
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